The Crystal Structures of α - and β -CdUO₄

TOSHIYUKI YAMASHITA, TAKEO FUJINO, NORIO MASAKI, AND HIROAKI TAGAWA*

Division of Chemistry, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken, 319-11, Japan

Received April 21, 1980; in revised form August 4, 1980

The structural parameters of α - and β -CdUO₄ crystals are determined by X-ray powder diffraction technique. α -CdUO₄ is rhombohedral and cell parameters are a = 6.233(3) Å and $\alpha = 36.12(5)^{\circ}$. β -CdUO₄ crystallizes in a C-centered orthorhombic cell with a = 7.023(4), b = 6.849(3), c = 3.514(2) Å. The space groups are $R\bar{3}m$ for α -CdUO₄ and Cmmm for β -CdUO₄. α -CdUO₄: 1U in (000), 1Cd in (1/2 1/2 1/2), 2O(1) in $\pm(uuu)$, 2O(2) in $\pm(vvv)$; u = 0.113, v = 0.350, Z = 1. β -CdUO₄: 2U in (000; 1/2 1/2 0), 2Cd in (1/2 0 1/2; 0 1/2 1/2), 4O(1) in (0, $\pm y$, 0; 1/2, 1/2 $\pm y$, 0), 4O(2) in ($\pm x$, 0, 1/2; 1/2 $\pm x$, 1/2, 1/2); x = 0.159, y = 0.278, Z = 2. β -CdUO₄ contains collinear uranyl UO $\frac{2}{7}$ groups with a U-O(1) distance of 1.91 Å, located either along or parallel to the c axis whereas the U-O(1) bond length in α -CdUO₄ is 1.98 Å which is longer than the usual uranyl bond length.

Introduction

In the early work by Ippolitova *et al.* (1), α -CdUO₄ was found to be formed by the reaction of CdO and U_3O_8 (Cd/U = 1) in air at 570°C. Ippolitova et al. reported that this α phase transformed into β -CdUO₄ at 720°C and that the β -CdUO₄ decomposed into oxygen-deficient $CdUO_{4-x}$ above 925°C. According to them, α -CdUO₄ is hexagonal and its crystal structure is isomorphous with $CaUO_4$, the cell parameters being a = 3.865(3) and c = 17.44(2) Å. On the other hand, β -CdUO₄ is face-centered orthorhombic with the lattice parameters a = 7.024(2), b = 6.850(3). and c = 3.526(5) Å. They have also reported that the high temperature phase $CdUO_{4-x}$ crystallizes into an oxygen-deficient struc-

* Present address: Institute of Environmental Science and Technology, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240, Japan. ture of CaUO₄-type of which cell parameters are a = 3.904(3) and c = 17.52(2) Å in hexagonal indexing.

The structure analysis of the nonstoichiometric CdUO_{4-x} has been determined by Reshetov and Kovba (2) by means of the X-ray powder diffractometry. They used the sample with composition CdUO_{3.63} and showed that it could be indexed also in a rhombohedral system with the space group $R\bar{3}m$ and that the oxygen parameters in $R\bar{3}m$ were given as u = 0.110 and v =0.335. Since there have been no reports of the structural determination of the stoichiometric α -CdUO₄, this is the first aim of this paper.

The crystal structure of β -CdUO₄ has been studied by Kovba *et al.* (3) by Xray diffraction using powder sample and single crystal. Their final proposed structure was *Pbam* with 2U in (a), 2Cd in (d), 4O(1) in (g) with x = 0.05 and y = 0.275, 4O(2) in (h) with x = -0.175 and y = 0.08. However, the systematic absence of general *hkl* reflections was in conflict with the extinction rule for *Pbam*, and the least-squares calculations for our intensity data did not converge into reasonably small *R* indexes. The analysis of the crystal structure of the β -CdUO₄ is the second aim of this paper.

We have investigated the α to β phase transformation of strontium monouranate, SrUO₄, where an anomalous oxygen nonstoichiometry change was observed around the transition temperature (4, 5). The α -SrUO₄ is rhombohedral and its crystal structure is isomorphous with α -CdUO₄. According to our X-ray diffraction study (6), the U-O(1) distance in α -SrUO₄ was between 2.04 and 2.08 Å which is longer than the usual uranyl bond length of 1.7 to 1.9 Å. Since similar compositional anomaly was recently observed also in the α to β phase transformation of cadmium monouranate (7), comparison of the detailed structure of α - and β -CdUO₄ to those of α and β -SrUO₄ is worthwhile.

Experimental

 α -CdUO₄ was prepared by heating an intimate mixture of CdO and UO₃ · 2H₂O with Cd to U atomic ratio of unity at 520°C in air for 40 hr. The product was orange-red and had the composition of CdUO_{3.988} by thermogravimetric analysis. β -CdUO₄ was prepared by heating the mixture of CdO and U₃O₈ in air at 850°C for 10 hr. The product was yellow, the composition being CdUO_{3.983}.

The X-ray diffraction study on these samples was performed with a Rigaku-Denki Geigerflex 2182D1 type diffractometer using CuK α radiation monochromatized with curved pyrolytic graphite placed in front of the NaI(T1) scintillation detector. The integrated intensities of 42 and 47 reflections, in the range of $10^{\circ} \leq 2\theta \leq 120^{\circ}$, were recorded for α - and β -CdUO₄, respectively. To eliminate systematic errors in obtained dif-

TABLE I

	α-CdU	O₄	
	Ippolitova et al. (1)	Reshetov and Kovba (2)	Present) work
Composition	- 1 15-1	CdUO _{3.63}	CdUO _{3.968}
a(hex) (Å)	3.865(3)	3.904(4)	3.864(3)
c(hex) (Å)	17.44(2)	17.54(1)	17.46(1)
c/a (hex)	4.51(2)	4.49(1)	4.52(1)
a(rhomb) (Å)	6.227(6)	6.266(3)	6.233(3)
a(rhomb) (deg)	36.16(6)	36.30(3)	36.12(5)
$d(\text{calc}) (g/\text{cm}^3)$	9.21	8.79	9.13
	β-CdU	O₄	
	Ippolit	ova	
	et al.	(1)	Present work
Composition			CdUO _{3.963}
a (Å)	7.024	(2)	7.023(4)
b (Å)	6.850	(3)	6.849(3)
c (Å)	3.526	(5)	3.514(2)
$d(\text{calc}) (g/\text{cm}^3)$	8.19		8.13

fraction angles, the observed data were corrected with those of rhombohedral α -SrUO₄ as standard (6). Lattice parameters were calculated by least-squares method on FACOM 230-75 for the diffraction angles in the range of $80^{\circ} \leq 2\theta \leq 120^{\circ}$.

The crystal data are tabulated in Table I together with those by Ippolitova *et al.* (1) and, Reshetov and Kovba (2). The observed and calculated $Q(= 1/d^2)$ for α -CdUO₄ are given in the second and the third columns of Table II, respectively. The Q values for β -CdUO₄ are shown in Table III.

Structure Analysis

1. Structure of α -CdUO₄

All reflections of the combination of *hkl* were observed for rhombohedral α -CdUO₄ in the whole 2θ range of the experiments of which the diffraction pattern was closely related to that of the α -SrUO₄ (6). Thus, we

hkl	$Q_{ m obs}$	$Q_{ m calc}$	Iobs	$I_{\rm calc}$	hkl	$Q_{ m obs}$	$Q_{ m calc}$	$I_{\rm obs}$	$I_{\rm calc}$
111	0.0299	0.0295	12.05	11.16	442	0.6854	0.6852	3.55	2.95
100	0.0930	0.0926	9.58	7.66	320	0.7075	0.7070	0.695	0.633
110	0.1029	0.1024	60.89	64.18	554	0.7330	0.7322	3.22	2.78
222	0.1188	0.1181	20.80	20.09	555	0 7406	(0.7381)	5 21	5 22
211	0.1423	0.1418	27.86	27.00	543/	0.7400	0.7402	3.21	5.52
221	0.1720	0.1713	2.31	1.51	533	0.7538	0.7541	0.634	0.531
322	0.2506	0.2500	1.52	1.21	421	0.7864	0.7858	0.720	0.625
333	0.2554	0.2657	0.959	1.29	211	0.8033	0.8036	2.97	3.19
101	0.2684	0.2679	21.42	23.48	2 2 Ī		0.8331		
$\binom{2}{2} \binom{1}{2}$	0.2999	$\begin{pmatrix} 0.2974 \\ 0.2002 \end{pmatrix}$	21.04	20.61	300	0.8349	(0.8331)	6.50	6.29
332) 111	0 3616	0.29927	2.08	1 27	4 5 17				
200	0.3010	0.3703	2.00 9.46	9 11	330	0 9213	0.9217	1 15	4 45
321	0.3700	0.3860	18 61	18 60	411	0.9215		4.15	7.75
220	0.3003	0.3000	6.52	5 59	655	0 9299	0.9290	3.02	1.90
433	0.4180	0.4020	8 30	7 15	532	0.9528	0.9531	4 19	3 75
311	0.4396	0.4392	0.50	0 547	644	0.7520	Z1 0001N	7.17	5.15
444	0 4731	0.4724	2.00	1.90	654)	0.9999	(1.0059)	2.59	2.49
443	0.4870	0.4862	1.01	0.992	542	1.0218	1.0219	0 847	0.837
331	0.5189	0.5179	0.437	0.501	665	1.0383	1.0373	0.488	0.578
432	0.5339	0.5336	1.68	2.38	666	1.0633	1.0628	0.913	0.659
422	0.5674	0.5671	4.87	5.17	441		/1.0693		
201	0.6289	0.6283	1.09	1.13	522	1.0707	1.0693	1.82	3.42
211	0.6382	0.6381	6.41	6.84	202/		1.0715	1.02	
544	0.6475	0.6437	0.625	0.208	311	1.1000	1.1010	0.564	0.782
310	0.6776	0.6775	4.63	4.75				2.201	

TABLE II

^a I_{obs} are integrated observed intensities in arbitrary units. $Q = 1/d^2$ are in Å⁻².

made the structure analysis on the basis of space group $R\bar{3}m$. The atomic positions were 1U in (000), 1Cd in (1/2 1/2 1/2), 2O(1) in $\pm(uuu)$ and 2O(2) in $\pm(vvv)$. To determine two unknown oxygen parameters, u and v, the peaks in two scans of different gains were recorded. One was for larger peaks and the other for smaller ones. The whole integrated intensities were collected by adjusting the former peak areas to the latter by means of several common peaks with middle heights.

To know the initial value of the oxygen parameters, a difference Fourier synthesis was made along the body-diagonal axis using the equation $\rho(x) =$ $\Sigma Am \cdot \cos(2\pi mx)$, where the sum was taken for m = h + k + l and x was the distance along the axis. The factor Am is expressed as $Am = c|F_{obs}| - |f_U + f_{Cd}|$ $\cos(\pi m)$ where c is the adjustable parameter expressed as $c = \Sigma |F_{calc}| / \Sigma |F_{obs}|$. Atomic scattering factors for U⁶⁺ were those from International Tables for X-ray Crystallography (8), and the factors for Cd²⁺ were obtained from Cromer and Waber (9). These were used with anomalous dispersion corrections (10). The electrondensity curve for oxygen with $0 \le m \le 18$ is shown in Fig. 1. The first maximum seen at x = 0.114 is assigned to O(1) and the second one at x = 0.356 to O(2). Refinement was carried out by minimizing the reliability index of $R = \sum w |I_{obs} - I_{calc}| / \sum w I_{obs}$, as a function of the oxygen parameters and temperature factors for cadmium and uranium. The weight, w, was regarded as $w = I_{obs}^{-1}$ for $I_{obs} \ge 10 \cdot I_{obs(min)}$ and w = 1 for $I_{obs} <$

YAMASHITA ET AL.

				-					
hkl	Qobs	$Q_{ m calc}$	Iobs	I _{calc}	hkl	Qobs	Qcalc	I _{obs}	I _{calc}
110	0.0420	0.0416	6.56	6.83	003	(0.7210)	(0.7288)		
001 /	0.0815	$\begin{pmatrix} 0.0810\\ 0.0811 \end{pmatrix}$	19.95	17.58	600	$\binom{0.7310}{0.7340}$	0.7299	2.75	2.39
020	0.0857	0.0853	12.51	13.54	2 4 2	0.7464	(0.7461)	2.20	2.55
111	0.1229	0.1226	27.14	27.95	441/		X0.7465		
201	0.1626	0.1621	2.8/	2.39	112	0.7702	$\begin{pmatrix} 0.7674\\ 0.7704 \end{pmatrix}$	2.34	2.28
$\begin{pmatrix} 0 & 2 & 1 \\ 2 & 2 & 0 \end{pmatrix}$	0.1670	$\binom{0.1002}{0.1664}$	7.97	8.10	531	0.7803	0.7797	1.75	1.97
310	0.2046	0.2038	0.393	0.300	351	0.7967	0.7964	1.74	1.91
130	0.2128	0.2121	1.16	1.34	203		/ 0.8099		
221	0.2480	0.2473	0.965	0.849	601	0 8150	0.8109	1 38	1.28
311	0.2855	0.2848	12.17	11.36	023	0.0159	0.8140	1.50	1.20
131	0.2938	0.2931	9.05	9.30	620/		0.8152 /		
$\begin{pmatrix} 0 & 0 & 2 \\ 4 & 0 & 0 \end{pmatrix}$	0.3243	$\begin{pmatrix} 0.3239\\ 0.3244 \end{pmatrix}$	5.26	4.88	$\binom{061}{260}$	0.8489	$\binom{0.8484}{0.8485}$	0.921	1.08
040	0.3417	0.3411	2.15	2.44	512		(0.8521)	0.721	1.00
112	0.3659	0.3655	0.781	0.838	261	0.9323	0.9295		
202		/ 0.4050			313/		0.9326	1.89	1.96
401	(0.4053	0.4054	0 77	0 77	133	0.9406	0.9409	1.65	1.56
022	0.4095	0.4092	0.33	0.37	442	0.9895	0.9894	1.32	1.53
420/		0.4097			403	1.0540	(1.0532)	1.08	1.10
$\begin{pmatrix} 0 & 4 & 1 \\ 2 & 4 & 0 \end{pmatrix}$	0.4228	$\begin{pmatrix} 0.4220 \\ 0.4222 \end{pmatrix}$	2.72	2.96	602/		(1.0538)	1.04	
2407	0.4550	0.42227	5 22	5 6 4		1.0707	(1.0648)	1.07	1 17
331 777	0.4339	0.4555 / 0.4903 \	5.55	5.04	640	1.0/0/	1.0096	1.07	1.17
421	0.4906	(0.4907)	3.28	3.58	062		(1.0/10/		
2 4 1	0.5037	0.5031	0.703	0.705	460	(1.0916)	1.0918		
312	0 5070	(0.5277)	0.520	0.450	711	1.0963	1.0958	4.67	4.48
510/	0.5278	0.5282	0.532	0.453	333/	(1.1028)	1.1031		
132	0.5364	0.5360	0.563	0.612	551	1.1212	1.1208	1.31	1.29
511	0.6098	0.6092	2.79	2.58	423	1 1392	(1.1384)	1.65	1 60
151	0.6347	0.6342	2.13	2.12	622/	1.1572	(1.1391)	1.05	1.07
402	0.6486	0.6483	1.53	1.31			(1.1458)	• • •	• •
$\begin{pmatrix} 0 & 4 & 2 \\ 4 & 4 & 0 \end{pmatrix}$	0.6653	$\binom{0.6650}{0.6655}$	2.74	2.72	$\begin{pmatrix} 2 & 4 & 3 \\ 6 & 4 & 1 \end{pmatrix}$	1.1459	$\begin{pmatrix} 1.1509\\ 1.1520 \end{pmatrix}$	2.30	2.08
332	0 6986	(0.6982)	0 437	0 431	262	1 1724	(1.1724)	1 47	1 58
530	0.0700	0.6987	0.457	0.451	461)	1.1/27	1.1728	1.4/	1.50

TABLE III

Observed and Calculated Q Values and Intensities for β -CdUO₄^a

^a I_{obs} are integrated observed intensities in arbitrary units. $Q = 1/d^2$ are in Å⁻².

 $10 \cdot I_{obs(min)}$. Atomic scattering factors for O^{2-} were those from Tokonami (11), and as the initial u and v values for successive approximations of the least-squares calculations, those by the $\rho(x)$ synthesis were used. At first, the temperature effect was not taken into account. In this case, the minimum R was 0.102 at u = 0.110 and v = 0.352. However, if isotropic temperature

factors for U⁶⁺ and Cd²⁺ were taken as the variables, the minimum R was reduced to 0.080 at u = 0.113, v = 0.350; $B_{\rm U} = 0.248$ and $B_{\rm Cd} = 0.639$.

The integrated observed intensities, I_{obs} , and the calculated intensities, I_{calc} , at this minimum are shown in the fourth and the fifth columns of Table II, respectively. In Table IV, the computed values of the oxy-

FIG. 1. The electron-density distribution along the body-diagonal axis due to oxygen atoms.

gen parameters and the isotropic temperature factors are tabulated together with the R value and the interatomic distances.

2. Structure of β -CdUO₄

The observed peaks all satisfied the condition h + k = 2n, which strongly suggests the C centered lattice. However, we first reexamined the space group Pbam of Kovba et al. (3), because it was thought that there might be the case that the intensities of diffraction peaks other than h + k =2n were accidentally too weak to be observed. The minimization of the R index was carried out by setting the atomic positions according to Kovba *et al.* (3), but the iterated computation of successive approximation did not converge. Moreover, I_{calc} obtianed by using the oxygen parameters of Kovba et al. (3) showed that (211) and (120)reflections which were $h + k \neq 2n$ should be strong enough to be observed. From these results, the possibility of Pbam was ruled out.

Because of the limitation of the powder diffraction technique, we could not try twodimensional Fourier synthesis. Then, the problem that has to be solved, in this case, is to find out the atomic arrangement that conforms with C centered orthorhombic symmetry, under the guidance of the R index. The smallest R value was obtained for Cmmm with the atomic positions as follows: 2U in (000; 1/2 1/2 0), 2Cd in (1/2 0 1/2; 0 1/2 1/2), 4O(1) in (0 ± y 0; 1/2 1/2 ± y 0), 4O(2) in (± x 0 1/2; 1/2 ± x 1/2 1/2). This space group is that which Kovba *et al.* (3) have reported as the possible alternative of the β -CdUO₄ structure. The oxygen parameters, x and y, and the isotropic temperature factors, B_U and B_{Cd} , were determined by minimizing the R index by the leastsquares calculations in a way similar with that for α -CdUO₄. The obtained minimum R value was 0.066 with the correction of the temperature effect.

The integrated observed intensities, I_{obs} , and the calculated intensities, I_{calc} , at the minimum R are indicated in the fourth and the fifth columns of Table III, respectively. The computed values of the oxygen parameters and the isotropic temperature factors are shown in Table IV together with the R value and the interatomic distances.

Discussion of the Structure

Our cell parameters on α -CdUO_{3.988} are well in accord with those by Ippolitova *et al.* (1). However, our *a* and *c* values in

INDEE IV	TA	BL	E	IV
----------	----	----	---	----

Oxygen Parameters, R Factors, Temperature Factors, and Interatomic Distances of α - and β -CdUO₄

	α-CdUO₄	β -CdUO ₄
Composition	CdUO _{3,988}	CdUO _{3.983}
Space group	R3m	Cmmm
O(1)	u = 0.113	y = 0.278
O(2)	v = 0.350	x = 0.159
Β _υ (Ų)	0.248	0.051
$B_{\rm Cd}$	0.639	0.227
R factor	0.080	0.066
U-O(1) (Å)	1.98	1.91
U-O(2)	2.25	2.08
Cd-O(1)	2.42	2.32
Cd-O(2)	2.61	2.40
O(1)-O(1)	2.91	3.04
O(1)-O(2)	2.79	2.82
O(2)-O(2)	2.31	2.23

hexagonal indexing are remarkably smaller than those by Reshetov and Kovba (2) on α -CdUO_{3.63}. The difference can be considered as caused from oxygen nonstoichiometry of the compound. The lattice parameters will be a = 3.863 + 0.1117x and c = 17.46 + 0.2235x in Å for α -CdUO_{4-x} provided that the dependence on nonstoichiometry is linear.

The crystal structure of α -CdUO₄ is isomorphous with those of $CaUO_4$ (12, 13) and α - and γ -SrUO₄ (6), where a uranium atom is surrounded by eight oxygen atoms which form a distorted hexahedron. Two of these oxygen atoms, O(1), which are on the body diagonal axis of the rhombohedral cell or along the c axis of the hexagonal cell one above and the other below the uranium atom are located closer to the uranium. Three of remaining six oxygen atoms, O(2), are on the plane 0.29 Å above and another three are on the plane 0.29 Å below the uranium atoms. These planes are normal to the body diagonal axis which is an inversion triad. Cadmium atoms are located between hexagonal layers binding them together. The oxygen around the cadmium atom is, however, made up of six O(1)atoms and two O(2) atoms. Arrangements are similar to those around the uranium atom if O(1) and O(2) are interchanged.

In CaUO₄ crystal which is typical of this structure, the U-O(1) distance is known to be short enough to form so-called uranyl bond. However, the distance for α -CdUO₄ by our data is 1.98 Å which is somewhat longer than the usual uranyl bond length which lies in the range of 1.7 and 1.9 Å. In this situation, infrared spectra were taken by the Nujol method. The data showed that the absorption peak was at 620 cm⁻¹ which was shifted to the long wave side from the position of the antisymmetric stretching vibration of the uranyl bond, 700 to 900 cm⁻¹. From the equation relating the force constant, K, and the bond length, R, with $K = (181.0/R)^{1/6}$ by Ohwada (14), the U- O(1) distance was found to be 1.96 Å which is in good agreement with the X-ray results.

The isotropic temperature factors are 0.248 and 0.639 for uranium and cadmium atoms, respectively. These values may be compared with those of $CaUO_4$ where the factors are 0.297 for uranium atoms and 0.542 for calcium atoms by means of the neutron powder diffraction analysis (13).

The crystal structure of β -CdUO₄ is determined to be orthorhombic with space group *Cmmm*. A three-dimensional view of the atomic arrangements is shown in Fig. 2. Around each uranium atom, two O(1) atoms and four O(2) atoms are situated forming a distorted octahedron. The four O(2) atoms occupy a rectangular position on the plane normal to the *b* axis containing the uranium atoms, and the two O(1) atoms are located on the line normal to this plane forming the uranyl group. The collinearity of the uranyl group, O(1)–U–O(1), is required form the space group symmetry.

The U–O(1) bond length of the β -CdUO₄ is 1.91 Å. This value agrees well with the values of 1.92 and 1.91 Å for MgUO₄ (16) and CaUO₄ (12), respectively. The infrared spectra corresponding to the antisymmetric stretching vibration of the uranyl bond at 700 cm⁻¹ led to the bond length 1.88 Å which supports the X-ray value. The U– O(2) distance by the present investigation is 2.08 Å. Since this distance is usually in

FIG. 2. Structure of β -CdUO₄.

the range of 2.2 and 2.3 Å in most monouranates, the U-O(2) bond seems to be stronger in β -CdUO₄.

As is seen in Fig. 2, the $(UO_2)O_4$ octahedra in β -CdUO₄ are chained endlessly along the c axis by sharing edges of the O(2) atoms. The shared O(2)–O(2) edge is 2.23 Å while the unshared O(2)–O(2) edge is 3.51 Å. Cadmium atoms are located at the center of the octahedra formed by four O(1) atoms and two O(2) atoms, and bind the uranyl chains together.

The arrangement of the $(UO_2)O_4$ octahedra in this crystal is similar to that of MgUO₄ (16) where the space group is *Iman*. The difference is that in β -CdUO₄ the shared O(2)-O(2) edge of $(UO_2)O_4$ octahedra is in the plane formed by a and b axes while in MgUO₄ it is not. As a result, c/2 of MgUO₄ becomes c of β -CdUO₄ forming a C centered lattice. The smaller cell parameters in MgUO₄ (16) (a = 6.520, b = 6.595, c = 6.924 Å) may be because of the smaller ionic radius of Mg²⁺ than Cd²⁺.

It is seen from Table IV that the interatomic distances between metal and oxygen atoms of β -CdUO₄ are shorter than those of α -CdUO₄. This fact shows that the metal-oxygen bonds of β -CdUO₄ are stronger than those of α -CdUO₄, which is in accord with the smaller temperature factors obtained for β -CdUO₄: $B_{\rm U} = 0.051$ and $B_{\rm Cd}$ = 0.227.

Here, the results with CdUO₄ can be compared with those of SrUO₄ in which phase transformation from α to β phases is similar to that of CdUO₄ (7). The crystal structure of α -CdUO₄ is isomorphous with that of α -SrUO₄, but the U–O(1) distances are 1.98 and 2.07 Å for α -CdUO₄ and α -SrUO₄, respectively. It should be noted that the crystal structure of β -CdUO₄ is different from that of β -SrUO₄ where the space group is *Pbcm* (15). Although the infinite chains of (UO₂)O₄ octahedra are parallel to each other along the *c* axis in β - CdUO₄, the distorted octahedra in β -SrUO₄ share the corners to form infinite two-dimensional sheets in the plane with the *b* and *c* axes. Because the U-O(1) distances are 1.91 and 1.85 Å for β -CdUO₄ and β -SrUO₄ (15), respectively, these values are both regarded as forming the uranyl bond.

Acknowledgments

The authors thank Dr. K. Ohwada for infrared absorption analyses.

References

- E. A. IPPOLITOVA, I. P. SIMANOV, L. M. KOVBA, G. P. POLUNINA, AND I. A. BEREZNIKOVA, DEG-INF Ser. 145 (1961).
- K. V. RESHETOV AND L. M. KOVBA, J. Struct. Chem. 7, 589 (1966).
- L. M. KOVBA, G. P. POLUNINA, E. A. IPPOLI-TOVA, YU. P. SIMANOV, AND V. I. SPITSYN, Russ. J. Phys. Chem. 35, 350 (1961).
- 4. H. TAGAWA AND T. FUJINO, Inorg. Nucl. Chem. Lett. 13, 489 (1977).
- 5. H. TAGAWA AND T. FUJINO, J. Inorg. Nucl. Chem. 40, 2033 (1978).
- T. FUJINO, N. MASAKI, AND H. TAGAWA, Z. Krist. 145, 299 (1977).
- H. TAGAWA AND T. FUJINO, Inorg. Nucl. Chem. Lett. 16, 91 (1980).
- J. A. IBERS, D. H. TEMPLETON, B. K. VAIN-SHTEIN, G. E. BACON, AND K. LONSDALE, "International Tables for X-ray Crystallography," Vol. III, p. 206. Kynoch Press, Birmingham (1962).
- 9. D. T. CROMER AND J. T. WABER, Acta Crystallogr. 18, 104 (1965).
- 10. D. T. CROMER, Acta Crystallogr. 18, 17 (1965).
- 11. M. TOKONAMI, Acta Crystallogr. 19, 486 (1965).
- 12. W. H. ZACHARIASEN, Acta Crystallogr. 1, 281 (1948).
- 13. B. O. LOOPSTRA AND H. M. RIETVELD, Acta Crystallogr. B25, 787 (1969).
- K. OHWADA, "Study on Infrared Spectra of Uranium Compounds." Thesis, The University of Tokyo, Tokyo (1977).
- J. O. SAWYER, J. Inorg. Nucl. Chem. 34, 3268 (1972).
- 16. W. H. ZACHARIASEN, Acta Crystallogr. 7, 788 (1954).